• Concept of Dimensions and Space

- One-space (\mathbb{R}): one dimension, one axis, one degree of freedom
 - Example: number line
- Two-space (\mathbb{R}^2): two dimensions, two axes, two degrees of freedom
 - Example: Cartesian plane (x, y). Polar plane (r, θ) . Longitude & Latitude
 - Quadrants: $2^2 = 4$
- Three-space (\mathbb{R}^3): three dimensions, three axes, three degrees of freedom
 - Example: Cartesian (x, y, z). Cylindrical (r, θ , z). Spherical (ρ , θ , φ).
 - Octants: $2^3 = 8$
- Four-space (\mathbb{R}^4): four dimensions, four axes, four degrees of freedom
 - Example: Space-time (*x*, *y*, *z*, *t*)

etc.

• Parametric Equations in Space

- In \mathbb{R}^3 , a curve can be expressed as a three functions of a parameter *t*, i.e. x(t), y(t), and z(t).
- Number of parameters is the number of free variables.
 - Points have no free variables (0 degrees of freedom). $\vec{r} = \langle x, y, z \rangle$
 - Curves may only have one free variable (i.e. one parameter)
 - Equation in three-space: $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$
 - Surfaces have two free variables (i.e. two parameters)
 - Equation in three-space: $\vec{r}(s,t) = \langle x(s,t), y(s,t), z(s,t) \rangle$
 - Solids have three free variables (i.e. three parameters)
 - Equation in three-space: $\vec{r}(r, s, t) = \langle x(r, s, t), y(r, s, t), z(r, s, t) \rangle$
- This allows complex figures to be more easily written as a parametric equation.
- There are an infinite number of ways to parameterize a function!
- Trigonometric identities may help parameterize circles and ellipses.

Further notes:

- Manifolds
 - A topological shape that is locally Euclidean around each point.
 - Common manifolds:
 - Curve: 1-manifold
 - Surface: 2-manifold
 - Euclidean 3-space: 3-manifold
 - Minowski Spacetime: 4-manifold
 - Non-examples: figure 8, lemniscate
- *n*-Spheres

0	0-sphere: two points	1-sphere: circle	2-sphere: sphere
0	Are the boundaries of $(n+1)$ -disks		
<i>i</i> -Cul	bes		
0	0-cube: point	1-cube: line segment	2-cube: square
	3-cube: cube	4-cube: tesseract	